Finding Universal Grammar in Initial Syllables*

- Phonological alternations (e.g. *naɪf ~ naɪvz*) are particularly costly in prominent positions (root, onset, stressed syllable, initial syllable).
- In well-behaved languages, like Turkish, stem-final alternations are rare in monosyllables. But English goes the other way, with more alternations in monosyllables.
- We show that the English situation is a historical accident: Speakers do not extend the generalization to novel items, and behave like Turkish speakers with novel alternations.
- Our experimental methods reveal a purely positional bias that is not coming from the ambient language. It’s a Universal bias that is independent from the phonetic basis, and can work directly against it.

1 If Universal Grammar exists, where can we find it?

UG-skepticism is gaining traction, for partially good reasons:

(1) The old “poverty of the stimulus” arguments were oversold. The stimulus is noisy, but very rich, so it’s getting harder to believe that crucial information is missing from it.

(2) Knowledge of articulation and acoustics could come from the environment, so the phonetic basis of phonology is not necessarily innate.

(3) The ability to find patterns and manipulate data is not unique to language, so it’s conceivable that linguistic units are manipulated by general-purpose cognitive mechanisms.

*For their valuable comments and discussion, we thank Adam Albright, Lauren Eby, Peter Graff, John Kingston, John McCarthy, Anne Pycha, Matt Wolf, and the audience at NELS 40.

There are good answers for most of these objections, the best defense is offense:

(4) Incorporate quantitative methods into our work, making it account for more of the evidence than UG-less work.

(5) Improve the poverty-of-the-stimulus argument, especially experimentally.

(6) Show that the phonology-lexicon interface is organized by purely formal elements of the grammar, beyond the phonetic basis.

In other words, make the evidence weigh in favor of UG (though likely a smaller UG than Chomsky imagined).

2 What is initial syllable faithfulness?

(7) In Shona, *[i]* contrasts with *[e]* only in the initial syllable.

<table>
<thead>
<tr>
<th>/sek+irir/</th>
<th>IDENT(high)-σ1</th>
<th>AGREE(high)</th>
<th>IDENT(high)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. se.ki.rir</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>b. si.ki.rir</td>
<td></td>
<td>!</td>
<td>*</td>
</tr>
<tr>
<td>c. se.ke.re.r</td>
<td></td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

(8) In Tamil, codas keep their place of articulation only in the initial syllable.

<table>
<thead>
<tr>
<th>/tunbã/</th>
<th>IDENT(place)-σ1</th>
<th>AGREE(place)</th>
<th>IDENT(place)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. tun.bã</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. tum.bã</td>
<td></td>
<td>!</td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/pasn+ɡə/</th>
<th>IDENT(place)-σ1</th>
<th>AGREE(place)</th>
<th>IDENT(place)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. pa.sn.ɡə</td>
<td></td>
<td>!</td>
<td>*</td>
</tr>
<tr>
<td>b. pa.sn.ɡə</td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Similarly in many other languages (see Casali 1998; Becker et al. 2008; Jesney 2009).
3 Good languages protect initial syllables

3.1 Turkish (Becker, Ketrez & Nevins 2008)

In Turkish, voicing alternations affect stops (p, t, ŋ, k) in some short words,

\[\text{tajf} \sim \text{tadʒ-i} \quad '\text{crown NOM/POSS}' \]
\[\text{sajf} \sim \text{sadj-i} \quad '\text{hair NOM/POSS}' \]

and some long words:

\[\text{amaʃ} \sim \text{amadʒ-i} \quad '\text{goal NOM/POSS}' \]
\[\text{anaʃ} \sim \text{anadj-i} \quad '\text{cub NOM/POSS}' \]

Long words are more likely to alternate (Lees; Inkelas & Orgun; Inkelas et al.; Hayes; Pycha et al.). Data from Inkelas et al. (2000):

<table>
<thead>
<tr>
<th>syllables</th>
<th>n</th>
<th>% voiced</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>238</td>
<td>19%</td>
</tr>
<tr>
<td>σσ</td>
<td>454</td>
<td>64%</td>
</tr>
<tr>
<td>longer</td>
<td>806</td>
<td>49%</td>
</tr>
</tbody>
</table>

We asked 24 Turkish speakers to choose a possessive form for 72 nouns that we created, e.g. tup, gujup ("wug test", Berko 1958).

Almost everybody (23/24) liked voiced possessives in polysyllables more than in monosyllables:

Constitution: Turkish speakers prefer alternations in polysyllables, and extend this preference to novel words.

3.2 What's the best predictor of alternations?

We know that long words alternate more in Turkish, but what is the best way to characterize "long" and "short"?

Various predictors of voicing alternations:
- Monosyllabicity (=protection by initial syllable faithfulness)
- Length in syllables, length in segments, raw phonetic length, etc.
- Neighborhood density, token frequency, other lexicon-based numbers (argued to matter in Ussishkin & Wedel to appear)

Monosyllabicity vs. length in segments

<table>
<thead>
<tr>
<th></th>
<th>χ²</th>
<th>d.f.</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>monosyll</td>
<td>140.13</td>
<td>1</td>
<td><.0001</td>
</tr>
<tr>
<td>r.segments</td>
<td>30.33</td>
<td>1</td>
<td><.0001</td>
</tr>
<tr>
<td>Total</td>
<td>169.07</td>
<td>2</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Monosyllabicity vs. neighborhood density

<table>
<thead>
<tr>
<th></th>
<th>χ²</th>
<th>d.f.</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>monosyll</td>
<td>147.74</td>
<td>1</td>
<td><.0001</td>
</tr>
<tr>
<td>r.neighbors</td>
<td>32.20</td>
<td>1</td>
<td><.0001</td>
</tr>
<tr>
<td>Total</td>
<td>163.16</td>
<td>2</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Monosyllabicity vs. log token frequency

<table>
<thead>
<tr>
<th></th>
<th>χ²</th>
<th>d.f.</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>monosyll</td>
<td>108.49</td>
<td>1</td>
<td><.0001</td>
</tr>
<tr>
<td>r.frequency</td>
<td>10.16</td>
<td>1</td>
<td>0.0014</td>
</tr>
<tr>
<td>Total</td>
<td>115.38</td>
<td>2</td>
<td><.0001</td>
</tr>
</tbody>
</table>

In Turkish, monosyllabicity is by far the best predictor of alternation.
3.3 Brazilian Portuguese

In Brazilian Portuguese, word-final [w] changes to [j] (Gomes & Manoel 2010) in some short words,

\(\text{sa} \sim \text{sa}^{j} \) 'salt sg/pl'
\(\text{pa} \sim \text{pa}^{s} \) 'stick sg/pl'

and in some long words:

\(\text{de'da} \sim \text{de'da}^{j} \) 'thimble sg/pl'
\(\text{ka'ka} \sim \text{ka'ka}^{s} \) 'cocoa sg/pl'

Real [w]-final words:

\[
\begin{array}{ccc}
\text{syllables} & n & \%[w] \rightarrow [j] \\
\sigma & 23 & 15\% \\
\sigma\sigma & 87 & 83\% \\
\text{longer} & 107 & 94\% \\
\end{array}
\]

We gave 35 speakers of Brazilian Portuguese 63 [w]-final made-up words (e.g. ‘daw, ma'haw, fan'taw'), and asked them to choose between a faithful [w] plural and an unfaithful [j] plural.

Almost everybody (31/35) liked [j]-plurals in iambs more than monos:

4 Generalizing using initial syllable faithfulness

The goal: Get trends that are created by existing lexical items into the grammar, so they can be projected onto novel items.

4.1 Making lexical trends available to the grammar

The secret is “inside-out derivations” (Hayes 1995, 1999; Becker 2009; Becker et al. 2008), or outside OT, the "single surface base hypothesis" (Albright 2002, 2008).

Turkish:

\(\text{sa}^{f} \sim \text{sa}^{f}-i \) 'hair' is /sa'/
\(\text{ta}^{f} \sim \text{ta}^{j}-i \) 'crown' is /ta'/

Brazilian Portuguese:

\(\text{pa} \sim \text{pa}^{s} \) 'stick' is /paw/
\(\text{sa} \sim \text{sa}^{j} \) 'salt' is /saw/

Some items require I\(\text{ }^{\text{}}}I(\text{voice}) \gg \ast \text{VTV}, and some \ast \text{VTV} \gg \text{IDENT(voice)}

Brazilian Portuguese:

\(\text{pa} \sim \text{pa}^{s} \) 'stick' is /paw/
\(\text{sa} \sim \text{sa}^{j} \) 'salt' is /saw/

Some items require \text{IDENT(back)} \gg \text{MAX(float)}, others \text{MAX(float)} \gg \text{IDENT(back)}

4.2 Projecting from the grammar to novel items

Inconsistent behavior in known items forces the learner to adopt lexically-specific rankings

\[
\begin{array}{cccc}
/\text{ama}^{f} + i/ & \text{IDENT(voice)-}\sigma & \ast \text{VTV} & \text{IDENT(voice)} \\
a. \text{ama}^{-} & \ast & \ast & \ast \\
b. \text{amad}^{-} & \ast & \ast & \ast \\
/\text{ana}^{f} + i/ & \text{IDENT(voice)-}\sigma & \ast & \ast \\
a. \text{ana}^{f} & \ast & \ast & \ast \\
b. \text{ana}^{-} & \ast & \ast & \ast \\
\end{array}
\]
Cloning (Pater 2006, 2009; Coetzee 2008; Becker 2009) allows the learner to maintain a single grammar:

\[
\text{IDENT(voice)} - \sigma_1 \gg \text{IDENT(voice)}_{\text{anaf}} \gg *\text{VTV} \gg \text{IDENT(voice)}_{\text{anaf}}
\]

Monosyllables respond to \(\text{IDENT(voice)} - \sigma_1\)

<table>
<thead>
<tr>
<th>/taʃ + i/</th>
<th>*\text{VTV}</th>
<th>IDENT(voice) - \sigma_1</th>
<th>IDENT(voice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. taʃi</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. eʃ taʃi</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/saʃ + i/</th>
<th>IDENT(voice) - \sigma_1</th>
<th>*\text{VTV}</th>
<th>IDENT(voice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. eʃ saʃi</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. saʃi</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The grammar:

\[
\text{IDENT(voice)} - \sigma_{1_{\text{anaf}}} \gg \text{IDENT(voice)}_{\text{anaf}} \gg *\text{VTV} \gg \text{IDENT(voice)}_{\text{anaf}}, \text{IDENT(voice)} - \sigma_{1_{\text{anaf}}}
\]

As more lexical items are learned, the grammar gets updated:

\[
\text{IDENT(voice)} - \sigma_{1_{\text{anaf} \text{ items}}} \gg \text{IDENT(voice)}_{\text{anaf} \text{ items}} \gg *\text{VTV} \gg \text{IDENT(voice)}_{\text{anaf} \text{ items}}, \text{IDENT(voice)} - \sigma_{1_{\text{anaf} \text{ items}}}
\]

Popular clones have more influence on novel words:

\[
\text{IDENT(voice)} - \sigma_{1_{\text{all items}}} \gg \text{IDENT(voice)}_{\text{all items}} \gg *\text{VTV} \gg \text{IDENT(voice)}_{\text{all items}}, \text{IDENT(voice)} - \sigma_{1_{\text{all items}}}
\]

Novel monosyllables get protection from two faithfulness constraints: \(\text{IDENT(voice)}\) and \(\text{IDENT(voice)} - \sigma_1\). Novel polysyllables get protection only from \(\text{IDENT(voice)}\), so their probability of coming out faithful is lower.

5 English: A bad language?

5.1 The lexicon: more alternations in monosyllables

Final \([f/θ]\) alternate with the voiced \([v/ð]\) in some nouns, but not others (Jespersen 1909; Berko 1958; Hayes 2009):

(32) [naɪʃ] ∼ [naɪvz] ‘knife’
 [pæθ] ∼ [pæðz] ‘path’

(33) [ʃɛɹɪʃ] ∼ [ʃɛɹɪvz], [ʃɛɹɪvz] ‘sheriff’
 [mæmɪθ] ∼ [mæmɪθs], [mæmɪðz] ‘mammoth’

What determines whether a noun alternates or not?

(34) Not (just) spelling:
 - Spelling doesn’t help at all with \([θ]\).
 - \(<\text{roofs}>\) is about \(100\) times more common than \(<\text{rooves}>\) in Google, but \([\text{ruvz} / ruvz]\) is very common.
 - \([dʃjævz]\) is spelled with \(<\text{ff}>\), which is not expected to alternate.

(35) Not (just) history, since the patterns changed quite a bit in recent history:
 - Post-[r] voicing is new: \([\text{dwoɹʃ}] ‘\text{dwarf}\), \([\text{woɹʃ}] ‘\text{wharf}\), \([\text{skɑɹʃ}] ‘\text{scarf}\).
 - Loss of most vowel alternations: \([\text{stævz}] ‘\text{staʃ}\).
 - Alternations lost for many speakers (completely or in some contexts).

So what does determine whether a noun alternates or not?

(36) Morpho-syntactic context:
 - No alternation in the genitive: knife’s, path’s, roof’s, dwarf’s, etc.
 - Compounds: \([\text{buʃz}] ‘\text{booths}\) vs. \([\text{tol-buθs}] ‘\text{toll-booths}\)
 - Plurals vs. denominal verbs: Plurals voicier in some items (knives/to knife), verbs in others (beliefs/to believe), or same (halves/to halve).

(37) Segmental context:
 - Long vowels are voicier than short vowels (leaves vs. cliffs).
 - Complex codas are voicier than simple codas (shelves vs. chefs).
Prosodic shape (length and stress)

- Monosyllables are voiciest: [ˈnaɪvz], [ˈpæðz]
- Iambs less voicy: [ʤɹ ̩ˈævz] ‘giraffe’, [vɚˈmuðz] ‘vermouth’
- Trochees least voicy: *[ˈʃɛɹɪvz], *[ˈmæmɪðz]

We asked 60 English-speakers to choose a plural form for a bunch of real nouns.

Almost everybody liked voiced plurals in monosyllables better than in trochees (53/60) and in iambs (50/60).

Stress effect: less alternations in unstressed vowels.

Anti-initial syllable effect: less alternations in non-initial syllables.

5.2 Novel words: No preference for monosyllables over iambs

We gave 100 English-speaking Mechanical Turkers 132 /θ/-final made-up nouns: Monosyllables (ˈsmaf, ˈwʌθ), iambs (gliˈnaf, dʒəˈzæθ), and trochees (ˈtækf, ˈhakɪθ).

Almost everybody liked voiced plurals in monosyllables better than in trochees (77/100), but the vote is split on iambs vs. monos (47/100).

Stress effect is projected from the lexicon; anti-initial syllable effect isn’t.

“Surfeit of the stimulus” (Becker et al. 2008): The speakers are given ample evidence in the lexicon, yet fail to form a generalization.

No anti-initial syllable effect even with twice the items and 3–4 times the participants as Turkish and Brazilian Portuguese.

Similar preliminary results with Russian voicing alternations.

5.3 UG doesn’t allow accurate projection from the lexicon

<table>
<thead>
<tr>
<th>/naf + z/</th>
<th>Agree(v)</th>
<th>IDENT(v)_af</th>
<th>IDENT(v)_σ1</th>
<th>IDENT(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. naɪfz</td>
<td>!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ɛf nairvz</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>c. naɪfs</td>
<td>!</td>
<td></td>
<td></td>
<td>!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/stæf + z/</th>
<th>Agree(v)</th>
<th>IDENT(v)_σ1</th>
<th>IDENT(v)_af</th>
<th>IDENT(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. stæfz</td>
<td>!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. stævz</td>
<td>!</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>c. ɛf stæfs</td>
<td>!</td>
<td></td>
<td></td>
<td>!</td>
</tr>
</tbody>
</table>
Polysyllables aren’t affected by $\text{IDENT}($voice$)-\sigma_1$:

\[
\begin{array}{|c|c|c|c|}
\hline
/d\acute{\text{j}}\text{r}\grave{\text{æ}}f + z/ & \text{Agree(v)} & \text{IDENT(v)}-\sigma_1 & \text{IDENT(v)}_{\text{aff}} \\
\hline
a. & \text{ʤr } \text{æf}z & *! & \\
\hline
b. & \text{ʤr } \text{æfvz} & * & \\
c. & \text{ʤr } \text{æfs} & *! & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
/\text{bəlif} + z/ & \text{Agree(v)} & \text{IDENT(v)}-\sigma_1 & \text{IDENT(v)} \\
\hline
a. & \text{bəlif}z & *! & \\
\hline
b. & \text{bəlivz} & *! & \\
c. & \text{bəlifs} & * & \\
\hline
\end{array}
\]

The grammar:

(49) $\text{IDENT}($voice$)-\sigma_{1,\text{stop}} \gg \text{IDENT}($voice$)_{\text{sonorant}} \gg \text{IDENT}($voice$)$

A fuller lexicon:

(50) $\text{IDENT}($voice$)-\sigma_{1,\text{stop}} \gg \text{IDENT}($voice$)_{\text{sonorant}} \gg \text{IDENT}($voice$)$

But now the odds are stacked against the monosyllables:

(51) $\text{IDENT}($voice$)-\sigma_{1,\text{stop}} \gg \text{IDENT}($voice$)_{\text{sonorant}} \gg \text{IDENT}($voice$)$

Individual items can be learned, but the generalization cannot be projected.

Possible grammars: Monosyllables are protected more than polysyllables; Monosyllables and polysyllables are equally protected.

Impossible grammar: *Polysyllable are protected more than monosyllables.

5.4 Artificial voicing: More alternations in polysyllables

English speakers regulate voicing alternations in the plural on [f] and [θ]. We asked 80 Mechanical Turkers to voice [p, t, k] with the plural suffix [ni] and see what happens.

(52) Artificial grammar setup (à la Wilson 2006)

<table>
<thead>
<tr>
<th>Training</th>
<th>the “mono training” group</th>
<th>the “iamb training” group</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 stop-final monos</td>
<td>mip</td>
<td>mipni</td>
</tr>
<tr>
<td>10 stop-final iamb</td>
<td>tagep</td>
<td>tagebni</td>
</tr>
<tr>
<td>5 stop-final monos</td>
<td>statist</td>
<td>statistni</td>
</tr>
<tr>
<td>5 stop-final iamb</td>
<td>gafut</td>
<td>gafudni</td>
</tr>
<tr>
<td>10 stop-final monos</td>
<td>prok</td>
<td>progni</td>
</tr>
<tr>
<td>10 stop-final iamb</td>
<td>lajok</td>
<td>lajogni</td>
</tr>
<tr>
<td>10 sonorant-finals</td>
<td>mnuŋ</td>
<td>mnuŋni</td>
</tr>
<tr>
<td>10 sonorant-finals</td>
<td>nadjol</td>
<td>nadjolni</td>
</tr>
</tbody>
</table>

Testing

<table>
<thead>
<tr>
<th>Training</th>
<th>the “mono training” group</th>
<th>the “iamb training” group</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 stop-final monos</td>
<td>gaɪp</td>
<td>gaɪp</td>
</tr>
<tr>
<td>10 stop-final iamb</td>
<td>fəʧop</td>
<td>fəʧop</td>
</tr>
<tr>
<td>10 stop-final monos</td>
<td>klet</td>
<td>klet</td>
</tr>
<tr>
<td>10 stop-final iamb</td>
<td>bəɡit</td>
<td>bəɡit</td>
</tr>
<tr>
<td>10 stop-final monos</td>
<td>dok</td>
<td>dok</td>
</tr>
<tr>
<td>10 stop-final iamb</td>
<td>ʧəpak</td>
<td>ʧəpak</td>
</tr>
<tr>
<td>10 sonorant-finals</td>
<td>pler</td>
<td>pler</td>
</tr>
<tr>
<td>10 sonorant-finals</td>
<td>ʒətaɪm</td>
<td>ʒətaɪm</td>
</tr>
</tbody>
</table>

The predictions

- If speakers generalize the anti-initial syllable effect from the fricatives: The “mono training” group should voice monos only, the “iamb training” group should voice both monos and iambs.
- If speakers use initial syllable faithfulness: The “iamb training” group should voice iambs only, the “mono training” group should voice both monos and iambs.
The “mono training” group voiced monos and iambs equally (no anti-initial syllable effect), but the “iamb training” group voiced monos significantly less often than iambs.

Conclusion: Given a chance, English speakers ignore the anti-initial syllable effect of their language, and prefer a Turkish/Portuguese initial syllable effect.

6 Beyond protection of monosyllables

So far, we used initial syllable faithfulness to separate monosyllables from polysyllables.

The next step: Show that initial syllable faithfulness distinguishes among polysyllables as well.

6.1 German: Another bad language

In German, the back vowels (a/o/u) front in the presence of various affixes. The plural can only impact the initial syllable (at least in real words):

(55) dorf ~ dɔrf-ə ‘village’
 flus ~ flus-ə ‘river’
 brudar ~ brudar-ə ‘brother’
 boðn ~ boðn ‘floor’

Other affixes, such as the diminutive, are a little more permissive:

(56) dorf ~ dɔrf-çən ‘village’
 brudar ~ brudar-çən ‘brother’
 halò ~ halò-çən ‘hello’
 admirəl ~ admirəl-çən ‘Admiral’

So German umlaut has an anti-initial syllable effect: The unfaithful mapping impacts initial syllables more than non-initial syllables.

No wug-test results yet, but see Wiese (1996); Fanselow & Féry (2002); van de Vijver & Baer-Henney (2010)

6.2 Artificial umlaut

We asked 66 English-speaking Mechanical Turkers to learn an artificial language that has “umlaut” in either the initial or non-initial syllable:

(57) Artificial grammar setup

<table>
<thead>
<tr>
<th></th>
<th>the “trochee training” group</th>
<th>the “iamb training” group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>5 [e] + 5 [u] trochees</td>
<td>5 [e] + 5 [u] iamb</td>
</tr>
<tr>
<td></td>
<td>brezəl</td>
<td>trəməl</td>
</tr>
<tr>
<td></td>
<td>brozəl</td>
<td>trəmol</td>
</tr>
<tr>
<td></td>
<td>zuməp</td>
<td>səfip</td>
</tr>
<tr>
<td></td>
<td>ziməp</td>
<td>safip</td>
</tr>
<tr>
<td></td>
<td>5 [a] (both shapes)</td>
<td>5 [a] (both shapes)</td>
</tr>
<tr>
<td></td>
<td>baləd</td>
<td>balədni</td>
</tr>
<tr>
<td></td>
<td>balədni</td>
<td>balədni</td>
</tr>
<tr>
<td></td>
<td>takəʃ</td>
<td>takəʃni</td>
</tr>
<tr>
<td></td>
<td>takəʃni</td>
<td>takəʃni</td>
</tr>
<tr>
<td>Testing</td>
<td>5 [e] + 5 [u] trochees</td>
<td>5 [e] + 5 [u] iamb</td>
</tr>
<tr>
<td></td>
<td>ʃebəf</td>
<td>kəzem</td>
</tr>
<tr>
<td></td>
<td>funəl</td>
<td>kəzem</td>
</tr>
<tr>
<td></td>
<td>gəmat</td>
<td>gəmat</td>
</tr>
<tr>
<td></td>
<td>skakəl</td>
<td>skakəl</td>
</tr>
</tbody>
</table>

10 [a] (both shapes)	10 [a] (both shapes)	
	gamat	gamat
	skakəl	skakəl
The predictions

- Projection from real English: Not much to project — no predicted difference between the groups. If anything, an anti-initial syllable effect (fat, tuθ, gus, woman, maus, laus).
- Initial syllable faithfulness: The “iamb training” group is not told that they can impact initial syllables, so they should only umlaut in iambics. The “trochee training” group should umlaut both trochees and iambics.

The “trochee training” group voices iambics significantly more often than the “iamb training” group voiced trochees.

Conclusion: We see that initial syllables are protected from alternations in both monosyllables and in polysyllables. No need for faithfulness to monosyllables.

Is initial syllable faithfulness due to phonetic lengthening of initial syllables?

- Barnes (2006): Longer vowels are protected by faithfulness more than short vowels. Turkish initial syllables are long → protected from alternations.
- Phonetically in English, vowels are shortened in trochees, so it’s really [zŭməp] vs. [səfuːp].
- If longer vowels are protected by faithfulness more than short vowels, then the “iamb training” group should extend the alternation more than the “trochee training” group — the exact opposite of what actually happened.
- The initial syllable is protected even though it’s phonetically short.

7 Conclusions

The good languages:

- Turkish and Portuguese protect monosyllabic lexical items from alternations more than polysyllabic items.
- The trend is projected from the lexicon onto novel items (“wug test”).

The bad language(s):

- English (and maybe also German and Russian) protect monosyllabic lexical items less than polysyllables.
- Step I: No projection of the trend from the lexicon onto novel items.
- Step II: Emergence of initial syllable faithfulness with novel alternations.

Properties of initial syllable faithfulness:

- Not a pure monosyllabicity effect — protects initial syllables in polysyllables.
- Not a phonetically grounded effect — protects short vowels more than long vowels.
- Shows up without any evidence from the ambient language = doesn’t need to be learned.

And more generally:

- The Universal elements of phonological theory are not limited to the phonetic basis. Phonology includes purely positional formal properties.
- Wug testing reveals how speakers organize their lexical items, and what generalizations they make over them.
- Artificial grammar experiments reveal implicational relationships in phonology = they reveal the elements and positions that the phonology can refer to, and the “elsewhere” elements and positions.
- Experimental techniques confirm that phonology cannot be reduced to bookkeeping. There is a lot of bookkeeping, but it is mediated by the inherent structure of the grammar.

Finally, we need to thank UG-skeptics for making us work harder and making our empirical basis stronger.
References