Michael Becker, UMass Amherst	MUMM 2 @ MIT
michael@linguist.umass.edu	March 29, 2008

Learning hidden structure in morphological bases*

Highlights:

- I show that the traditional generative analysis, which attributes hidden structure to roots, makes the wrong predictions about statistical knowledge that speakers have.
- I propose a learning model that attributes hidden properties to constraint rankings, and if necessary, also to the UR's of affixes. Attributing hidden structure to roots is done only as a last resort, via suppletion.
- My proposal makes OT-based work, which benefits from UG effects, compatible with assuming surface-true forms as UR's (Albright 2008a).

1 Turkish voicing alternations

1.1 Grammar-based analysis

- (1) bare stem possessive
 - sop sop-u 'clan'
 - фор фоb-и 'nightstick'

My analysis: irregular intervocalic voicing

- (2) The UR's of [sop] and [cop] are /sop/ and /cop/
- (3) The UR of the possessive is /u/ (actually just a high vowel)
- (4) $/\text{sop} + u/ \rightarrow [\text{sopu}]$ requires IDENT(voice)-LAB $\gg *VTV$ $/\text{cop} + u/ \rightarrow [\text{cobu}]$ requires $*VTV \gg \text{IDENT}(\text{voice})-\text{LAB}$

The inconsistent ranking requirements trigger constraint cloning:

(5) IDENT(voice)-LAB_{sop} \gg *VTV \gg IDENT(voice)-LAB_{ckop}

(7)

From this point on, every word that is sensitive to the ranking of IDENT(voice)-LAB relative to *VTV will be listed:

(6)		/top + u/	IDENT(voice)-LAB	*VTV
	a. 🖙	top-u		*
	b.	tob-u	*!	

)		/ot + u/	IDENT(voice)-LAB	*VTV
	a.	ot-u		 *
	b. 🙁	od-u		

(8) IDENT(voice)-LAB_{sop, top, alp, ...} > *VTV >> IDENT(voice)-LAB_{dop, harp, ...}
Until the speaker gets:

(9) IDENT(voice)-LAB_{22 items} \gg *VTV \gg IDENT(voice)-LAB_{8 items}

Novel p-final words will have a 8/30 (=27%) chance of alternating with [b]. The result: the lexical statistics are built into the grammar.

1.2 Why does this have anything do to with the grammar?

Becker, Ketrez & Nevins (2007) showed that Turkish speakers replicate the lexical statistics for nouns of different places (p, t, \mathfrak{t} , k) and sizes (mono- vs. poly-syllabic), but do not replicate the lexical statistics about vowel height (more alternations after high vowels in the lexicon). We proposed that UG acts as a filter on the kinds of generalizations that speakers learn.

More generally, processes that are regular in some language are often irregular in another: intervocalic voicing, vowel harmony, cluster simplification, etc. Using the same mechanism for regular and irregular processes seems like a good

idea, especially given the dearth of regular processes.

^{*}Ideas presented today owe much to discussions with Adam Albright and Matt Wolf. I am also grateful to John McCarthy and Joe Pater for being a constant source of feedback, encouragement, and hard questions. I assume the responsibility for any remaining errors, in this paper and elsewhere.

1.3 What's wrong with a UR-based analysis?

The classic generative analysis of Turkish (Inkelas & Orgun 1995; Inkelas et al. 1997):

(10) bare stem possessive

sop	sop-u	'clan'
фор	фob-u	'nightstick'

The analysis:

- (11) The UR's of [sop] and [c_{o} op] are /sop/ and / c_{o} oB/
- (12) The UR of the possessive is /u/ (actually just a high vowel)

(13)	$/\text{sop} + u/ \rightarrow$	[sopu] requires	$\text{Ident(voice)-lab} \gg * \text{VTV}$	
------	--------------------------------	-----------------	--	--

$\operatorname{sop} + u$	IDENT(voice)	*VTV
a. 🖙 sopu		*
b. sobu	*!	

(14) $/\text{cboB} + u/ \rightarrow [\text{cbobu}]$ is consistent with IDENT(voice)-LAB $\gg *VTV$

с ј оВ + u	IDENT(voice)	*VTV
а. с д ори		*!
b. 🖙 czobu		

The grammar is consistent: IDENT(voice)-LAB $\gg *VTV$

The problem: The learner has no way to encode the relative numbers of /p/'s and /B/'s in the grammar. Going directly to the lexicon to find them there, unhindered by UG, will find the vowel-height generalization that speakers don't have.

Slightly better alternative that gets a consistent grammar: Attribute hidden structure of the affix.

- (15) The UR's of [sop] and [cop] are /sop/ and /cop/
- (16) The possessive has two allomorphs: /u/ and /[+voice] u/
- (17) $/\text{sop} + u/ \rightarrow [\text{sopu}]$ $/\text{cop} + [+\text{voice}] u/ \rightarrow [\text{cobu}]$

The floating [+voice] is protected by MAX(float), as in Wolf (2007), and we get a consistent grammar:

(18) $Max(float) \gg IDENT(voice)-LAB$

Each allomorph of the possessive lists the roots it takes:

(19) /u/ takes /sop/, /tup/, /alp/, ... /[+voice] u/ takes /cgop/, /harp/, ...

The prediction: Speakers will know the relative frequency of voicing alternations for the language as a whole, but not for specific stops or sizes, since the allomorphs of the possessive say nothing about the shape of the nouns they take.

Conclusion: Assume the bases as UR's, assume that affixes only have segments in them, and try to get everything else by ranking constraints. Clone constraints as necessary.

2 Fallback: When the grammar is not enough

Korean (Albright 2008b):

(20)

Unmarked	Accusative		
nat	nat ^h il	'piece'	113
nat	natf ^h il	'face'	160
nat	nadil	'grain'	1
nat	nac j il	'daytime'	17
nat	nasil	'sickle'	375

Assuming $/nat^{\gamma}$ for the roots and /il/ for the accusative can do some work:

(21)		/nat ⁻ + il/	*VTV	IDENT(voice)	IDENT(asp)
	a.	natil	*!		
	b.	nadil		*!	
	c. 🖙	nat ^h il			*

- $\begin{array}{ll} (22) & /nat"\!+il/ \rightarrow & [nat^hil], [nat]^hil] \\ & requires \ *VTV \gg {\tt IDENT}(voice) \gg {\tt IDENT}(asp) \end{array}$
- $\begin{array}{ll} \mbox{(23)} & \mbox{nat`+il} \rightarrow & \mbox{[nadil], [nackil]} \\ & \mbox{requires } *VTV \gg \mbox{Ident(asp)} \gg \mbox{Ident(voice)} \end{array}$
- (24) $IDENT(voice)_{\{113+160 \text{ items}\}} \gg IDENT(asp) \gg IDENT(voice)_{\{1+17 \text{ items}\}}$

The prediction for a novel form, [pat[¬]]:

- (25) 94% chance of $[t^h]$, $[tf^h]$, 6% chance of [d], [tf]
- *TI, which wants assibilation before a high vowel, will take care of [s]:
- (26) $/nat' + il / \rightarrow$ [nasil] requires *TI \gg IDENT(cont)
- $\begin{array}{ll} (27) & /nat'+il/ \rightarrow & [nat^{h}il], [natf^{h}il], [nadil], [nadil] \\ & requires \ IDENT(cont) \gg *TI \end{array}$

(28) $IDENT(cont)_{\{113+160+1+17 \text{ items}\}} \gg *TI \gg IDENT(cont)_{\{375 \text{ items}\}}$

The prediction for a novel form, [pat[¬]]:

(29) 56% chance of [s], 44% chance of $[t^h]$, $[t_j^{h}]$, [d], $[d_j]$

But are there plausible constraints that will map /nat' + il/to [natjhil]? It seems awfully hard to palatalize without a front vowel around.

If the speaker can't find any such constraints, they will assume that the missing feature is floating in the UR of the accusative affix: /[-ant] il/.

- (30) $/\operatorname{nat}^{+} [-\operatorname{ant}] \operatorname{il} \to [\operatorname{nat}^{h} \operatorname{il}], [\operatorname{nad}_{\operatorname{il}}]$ requires MAX(float) \gg IDENT(ant)
- (31) $/nat'+[-ant] il \rightarrow [nat^{h}il], [nadil]$ requires IDENT(ant) \gg MAX(float)
- (32) $/nat' + [-ant] il / \rightarrow [nasil]$ requires * $\int \gg IDENT(ant), MAX(float)$
- $(33) \quad * \int \gg I \text{Dent}(ant)_{\{113+1 \text{ items}\}} \gg M \text{AX}(float) \gg I \text{Dent}(ant)_{\{160+17 \text{ items}\}}$

The prediction for a novel form, [pat[¬]]:

(34) 61% chance of $[tf^h]$, [ds], 39% chance of $[t^h]$, [d]

Summary of the preferences that the grammar makes:

(35)		IDENT(cont)	IDENT(voice)	IDENT(ant)	
	[s]	56%			= 56%
	[ʧ ^h]		0.40/	61%	= 25%
	$[t^h]$	[ʤ]	39%	= 16%	
	[¢]		6%	61%	= 2%
	[d]		0%	39%	= 1%

The high probability of [s] and $[t_{j}^{h}]$ conforms with the report of Albright (2008b). The probability of $[t_{j}^{h}]$ might be a bit too high?

3 Last resort: Suppletion and diacritics

It's certainly not the case that every paradigmatic relation can be derived with phonological mechanisms, e.g. English go \sim went.

English ot-takers: teach, catch, think, bring, seek, fight, buy — how many of those can map to their past tense using phonological mechanisms?

The rhymes of [brnj] and [bay] don't share any features with [bt] beyond [consonantal]. If we assume a floating pair of segments, /bt/, they can dock correctly and replace the root segments.

$\boxed{ bay + \{d, st\} }$	MAX(float)	MAX(root)
a. 🗇 bət		**
b. bat	*	*
c. bay	**	
d. bayd		

(36)

The fact that the regular [bayd] harmonically bounds the intended winner is also a hint that something non-phonological is going on, prompting the speaker to assume suppletion or some phonology-free diacritic.

Either cloning MAX(float) or using diacritics is equally bad for finding out what kind of roots are ɔt-takers, and indeed speakers have no clue about ɔt-taking.

4 Conclusions

Render onto the grammar what is the grammar's.

- When faced with pairs of words in paradigms, assume one form as the UR and derive the other one from it.
- Assume that affixes only have segments in them, and try to get the rest from constraint rankings.
- If no grammar can be found, assume that missing structure is floating in the UR's of affixes, and try to get the rest from the grammar.
- If everything else fails, assume suppletion and/or diacritics.

This approach learns lexical trends and projects them onto novel words without giving up the strengths of Optimality Theory.

References

- Albright, Adam (2008a). A Restricted Model of UR Discovery: Evidence from Lakhota. Ms. MIT.
- Albright, Adam (2008b). Explaining universal tendencies and language particulars in analogical change. In Jeff Good (ed.) *Language Universals and Language Change*, Oxford University Press.
- Becker, Michael, Nihan Ketrez & Andrew Nevins (2007). The surfeit of the stimulus: Analytic biases filter lexical statistics in Turkish devoicing neutralization. Ms. UMass Amherst.
- Inkelas, Sharon & Cemil Orhan Orgun (1995). Level ordering and economy in the lexical phonology of turkish. *Language* **71**. 763–793.
- Inkelas, Sharon, Cemil Orhan Orgun & Cheryl Zoll (1997). The implications of lexical exceptions for the nature of the grammar. In Iggy Roca (ed.) *Derivations and Constraints in Phonology*, Oxford: Clarendon. 393–418.
- Wolf, Matthew (2007). For an autosegmental theory of mutation. In Leah Bateman, Michael O'Keefe, Ehren Reilly & Adam Werle (eds.) UMOP 32: Papers in Optimality Theory III, Amherst, MA: GLSA. 315–404.

Cloning MAX(float) or MAX(root) will give a small probability to ɔt-taking, but will say nothing about the possible shapes of ɔt-takers.