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Prudent error-driven learning with OT-CC∗

Highlights:

• Theoretical problem: OT-CC offers a theory ofGEN that allows us to derive outputs,

but does so at the cost of a candidate set that grows factorially with the number of

required repairs.

• Under-reported empirical observation: Children prudently selectthe words that they

attempt to produce, avoiding words that would surface too unfaithfully. The kinds of

words that children attempt develop gradually, just like the kinds of words that children

produce, only a little earlier.

• I propose that the factorial explosion is the cause for children’s selection of targets.

Choosing targets that involve less repairs is a way to limit the explosion of candidate

chains. I offer a version of error-driven learning that incorporates OT-CC’sGEN and

the need to mitigate the factorial explosion.

1 Error-driven learning with RCD

In error-driven learning (Tesar & Smolensky 1998), the learner runs a form through their

current grammar, and compares it with the surface form. Example:

(1) H0 : *CODA ≫ DEP

Adult form: [kat]

Current grammar produces: [kat@]

[kat] 6= [kat@] → make winner-loser pair

Demote *CODA

∗Thanks to Outi Bat-El for data and insightful discussion. Thanks to Joe Pater and John McCarthy for

feedback and valuable comments. Remaining errors are not worth losing sleep over.
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In classic OT,GEN is perfectly well-defined as a function, but it was never fully described

as an algorithm (although some success was met in Tesar 1995;Eisner 2003; Riggle 2004).

Therefore, we don’t know how [kat@] is generated as the output of /kat/. All we know is that

once [kat@] is generated,EVAL will determine that it’s the winner.

(2) /kat/ →

GEN

phonological

operations

→

kat

kat@

kat@P

kat@P@
...

→

EVAL

constraint

evaluation

→ [kat@]

2 Producing candidate sets using OT-CC

OT-CC (McCarthy 2007a) is based on Harmonic Serialism, a derivational version of OT

(Prince & Smolensky 1993/2004:94-95). In OT-CC, the candidate set is finite and can be

generated algorithmically.

2.1 Harmonic improvement

Moreton (2004): In OT, the winner is either completely faithful to the input, or less marked

than the input.

(3) Given an input /A/ and an OT grammar, the output is either [A] or some [B] that is

less marked than [A].

(4) [A] is the the fully faithful candidate, the most harmonic candidate that incurs no

faithfulness violations.

(5) The output is the most harmonic candidate. If the output is different from the fully

faithful candidate→ the output is less faithful and less marked than the fully faithful

candidate.

(6)
/kat/ *CODA DEP

a. kat *!

b. ☞ kat@ *
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2.2 OT-CC, Optimality Theory with Candidate Chains

OT-CC (McCarthy 2007a) is a theory of phonology that builds on Moreton’s “harmonic im-

provement”, and adds the idea that improving the input is done one step at a time.

In this theory, a candidate is not just a surface form, it is achain of forms that starts with the

input and derives the output one step at a time.

(7) Given an input /A/ and a surface form [B], the winner is a

candidate chain such that:

• The first link in the chain is [A]

• The last link in the chain in [B]

• Every link in the chain is more harmonic than the preceding link

• Every link in the chain adds exactly one basic unfaithful phonological operation

= one Localized Unfaithful Mapping (LUM)

(8) Example: given the input /kat/ and the grammar *CODA ≫ DEP,

the chain<kat, kat@> is the winner, since

• [kat] is the fully faithful candidate

• [kat@] is more harmonic than [kat] given the grammar

• [kat] → [kat@] adds exactly one LUM: epenthesis of a schwa

(9) Given the input /kat/ and the grammar *CODA ≫ DEP, *VTV

• <kat, kat@, kad@> is the winner

• *<kat, kat@> is a possible chain (but not the winner)

• ** <kat, kad@> is not (epenthesis and voicing done at once)1

• ** <kat, kad, kad@> is not (not harmonically improving)

The basic phonological operations include epenthesis of one segment, deletion of one seg-

ment, and change of one feature. The operations derive the input from the output one step at

time.

1One star marks a losing chain, two stars mark an ill-formed chain
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2.3 Finite candidate sets

OT-CC candidate sets are finite if we are know that:

• Each chain is finitely long

• The number of chains is finite

(10) What are possible ways to make a chain infinitely long?

• Unbounded epenthesis

• Repeating forms in the chain

If these things don’t happen, all chains are finitely long.

(11) Chains can’t have unbounded epenthesis if we only allowfaithfulness and markedness

constraints: **<A, AA, AAA, AAAA, ... > (in terms of Moreton (2004), the grammar

is “eventually idempotent”.

• Markedness constraints can’t cause unbounded epenthesis,because they only

look at the output. They can only demand epenthesis up to a certain size (e.g.

minimal word).

• Faithfulness constraints demand input-outputidentity, so they can’t cause epenthe-

sis.

(12) Forms can’t repeat in a chain: **<..., A, ..., B, ..., A, ...>

If A follows B in a chain, then A is more harmonic than B

If B follows A in a chain, then B is more harmonic than A

Both statements can’t be true.

(13) The number of chains is finite because the number of operations is finite.

Starting with the trivial one-link chain (the faithful candidate), the finite set of oper-

ations apply to it, forming a finite number of two-link chains. From those, a finite

number of three-link chains will be created, etc., until chains can’t get any longer.
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3 Learning with a theory of GEN

Now that we have a theory ofGEN, we can use it to run forms through the grammar:

(14) H0 : *CODA ≫ DEP

Adult form: [kat]

Current grammar produces the winning chain<kat, kat@>

[kat] 6= [kat@] → make winner-loser pair

Demote *CODA

The problem: When a derivation from the input to the winner involves repairs that don’t

interact between them, i.e. repairs that can apply in any order, the number of chains grows

factorially with the number of repairs.

Example: Children acquiring Hebrew go through a stage whereadulta.vo.(ḱa.do)‘avocado’

is produced as(ká.do). Deleting three segments can give rise to up to3! = 6 possible winning

chains:2

(15) <a.vo.(ká.do), vo.(ká.do), o.(ká.do), (ká.do)>

<a.vo.(ká.do), vo.(ká.do), v.(ká.do), (ká.do)>

<a.vo.(ká.do), a.o.(ká.do), o.(ká.do), (ká.do)>

<a.vo.(ká.do), a.o.(ká.do), a.(ká.do), (ká.do)>

<a.vo.(ká.do), av.(ká.do), a.(ká.do), (ká.do)>

<a.vo.(ká.do), av.(ká.do), v.(ká.do), (ká.do)>

Generally,n unordered repairs give rise ton! winning chains3.

My proposal: Children accept the harsh reality of factorialexplosion, and mitigate the prob-

lem by avoiding derivations that will require too many chains.

2The number of steps involved in a given derivation is a theoretical matter. Specifically for deletions that

aren’t crucially ordered, I assume that deletion happens one segment at a time. See however, McCarthy (2007c),

for a proposal that segments get deleted one feature at a time, and McCarthy (2007b), who proposes that any

amount of deletion can happen in one step of the derivation.
3There can also be up to(n−1)!+(n−2)!+ ... losing chains, but those add up to less thann!. If repairs are

ordered, the number of chains grows linearly (n repairs give rise ton chains). This means that the number of

chains doesn’t necessarily correlate with the depth of the derivation, since processes that are crucially ordered

do not increase the number of chains.
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4 Children’s target selection

In early stages of acquisition, children pare down all theirwords to a single strong syllable

(S), then allow words with a following weak syllable (SW, trochee). This is a commonly

reported pattern cross-linguistically (e.g. Pater 1997; Vihman et al. 1998).

(16) Shaxar’s monosyllabicproductions from polysyllabic targets (Adam & Bat-El 2007)

Period Age SW WS

target %mono-σ target %mono-σ

I 1;02.00-1;03.05 9 56% 7 86%

II 1;03.14-1;04.24 43 14% 29 48%

III 1;05.04-1;05.08 39 10% 29 28%

IV 1;05.15-1;05.29 35 11% 57 28%

V 1;06.02-1;06.20 49 2% 55 29%

VI 1;06.26 26 0% 53 11%

VII 1;07.02-1;07.09 51 4% 99 4%

For Shaxar, producing SW targets rarely involves deletion after period I, but producing WS

targets commonly involves deletion well into period V. Adam& Bat-El’s (2007) observation:

Shaxar shows the gradual acceptance of WS words not only in his productions, but also in

his attempts (see also Schwartz 1988).

(17) Shaxar’sattempts at major class words (Adam & Bat-El 2007)

Period Age targets SW WS % WS

I 1;02.00-1;03.05 16 9 7 44%

II 1;03.14-1;04.24 72 43 29 40%

III 1;05.04-1;05.08 68 39 29 43%

IV 1;05.15-1;05.29 92 35 57 62%

V 1;06.02-1;06.20 104 49 55 53%

VI 1;06.26 79 26 53 67%

VII 1;07.02-1;07.09 150 51 99 66%

This child gradually attempts subsets of Hebrew that more closely resemble the adult lan-

guage, which has WS (final stress) in∼75% of its major class words (Bolozky & Becker

2006).
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Classical OT naturally captures the constraints on the child productions: MARKEDNESS≫

MAX causes as much deletion as needed to satisfy markedness. Butthis does not capture the

constraints onattempts, as there is no way to express the cost of deletion.

In OT-CC, more deletion causes more chains, so there is a costto massive deletion. The

explosion of chains can represent a measure of the processing load of a given input-output

mapping.

5 Prudent learning

The learning algorithm:

(18) 1. Prepare the data for processing

(a) Accept a batch of input forms.

(b) Run each form through the current grammar, withGEN turned off, so only

trivial single-link chains are created. Syllaby and run throughEVAL .

(c) Order the forms in the current batch such that the least marked forms are

processed first, i.e. in decreasing harmony.

2. Apply prudent error-driven learning:

(a) Select the first form from the batch, run throughGEN andEVAL .

(b) Compare the winner with the adult form. If not identical,add winner-loser

pair to the Support (or Cache, see Tessier 2007), and run BCD.

(c) If GEN created more thanx chains, go back to step 1. Otherwise, keep going

until all the batch is processed.

Example:

Suppose a child picks out the following nouns from a stream ofHebrew they’re exposed

to: ba.ńa.na ‘banana’,mit.ri.yá ‘umbrella’, gé.Sem ‘rain’. The child constructs a faithful

candidate from each form in the batch:

(19)
*L APSE INITIAL -σ́ MAX

a. ba.ná.na *

b. mit.ri.yá * *

c. gé.Sem
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With the current grammar, the batch is reordered on a scale ofharmony: géSem, bańana,

mitriyá. These are run throughGEN andEVAL :

(20) 1. géSemis processed, one chain created:<géSem>.

2. bańana is processed, several chains created, e.g.<ba.ńa.na, bná.na, bá.na>,

<ba.ńa.na, a.ná.na, ná.na>, etc. W-L pair created:

INITIAL -σ́ MAX

ba.ńa.na≻ *bá.na, *ná.na L W

INITIAL -σ́ demoted below MAX .

3. mit.ri.yá is known to be worse thanba.ńa.na, which involved several chains, so it

may not be attempted at all, and it’s back to step 1, to collectmore data from the

environment. If it is attempted, it will likely involve morechains thanba.ńa.na

did.

Given the initial grammar of *LAPSE ≫ INITIAL -σ́ ≫ MAX , mit.ri.yá reduces toyá, i.e.

deletion of 5 segments, for up to5! = 120 chains. There are two possible ways in which

processingba.ńa.nabeforemit.ri.yá can be beneficial:

(21) The number of chains created when derivingba.ńa.na can warn about the cost of

processingmit.ri.yá, causing avoidance.

(22) If the processing ofba.ńa.na causes demotion of INITIAL -σ́ below MAX , then the

input mit.ri.yá will only reduce toti.yá, not yá. Deleting three segments rather than

five means that the number of chains will be closer to3! = 6 rather than5! = 120.

This scenario is simplified, since real children attempt increasingly complex forms very grad-

ually. Plain error-driven learning can learn too fast, skipping stages that children take a while

to go through (Tessier 2007, and see also a solution in terms of Harmonic Grammar, Jesney

& Tessier 2007,later today).

6 Conclusions

• I presented data about the under-reported phenomenon of children’s target selection,

pointing out that children avoid words whose phonological structure would require too

much deviation from the adult form.

• I proposedprudent learning, an error-driven learning algorithm that derives target se-

lection from the cost of chain explosion in OT-CC.
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• Consequently, chain explosion in OT-CC is no longer viewed as a problem, but rather

as a desired property that supplies a formal expression for the observed phenomenon.
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